The Role of Cofactors and the Endothelial Cell Surface in Protein-c Activation

نویسنده

  • Charles T. Esmon
چکیده

ANTICOAGULANT PATHWAY P ROTEIN-C is a vitamin-K-dependent plasma zymogen.’ After activation, activated protein-C differs from the vitamin-K-dependent plasma clotting factors in that it potently inhibits coagulation5 by inactivating factors V6’7 and VIII,7’8 and it facilitates fibrinolysis in vivo9”#{176} by elevating circulating plasminogen activator levels.tO Clinical evidence of protein-C involvement in the regulation of coagulation comes from the observation that low levels of protein-C are associated with recurrent familial thrombosis.”2 To understand the role of protein-C in hemostasis, it is useful to discuss the protein-C anticoagulant pathway. This pathway can be conveniently divided into three parts: (1 ) protein-C activation; (2) the inhibition of coagulation through the inactivation of factors V/Va and Vill/Vitla by activated protein-C, and (3) the inhibition of activated protein-C by a plasma protease inhibitor specific for this enzyme. Each part of this pathway involves unique proteins and/or receptor surfaces. A schematic diagram of the role of protein-C in the regulation of blood coagulation is shown in Fig. 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiation-induced expression of platelet endothelial cell adhesion molecule-1 in cerebral endothelial cells

Background: Radiation-induced molecular changes on the endothelial surface of brain arteriovenous malformations (AVM) may be used as markers for specific vascular targeting agents. In this study, we examined the level of expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) on brain endothelial cell surface after radiation treatment, with the aim of targeting the radiation-induc...

متن کامل

Pathogenic interactions between Helicobacter pylori adhesion protein HopQ and human cell surface adhesion molecules CEACAMs in gastric epithelial cells

Objective(s): The present paper aims to review the studies describing the interactions between HopQ and CEACAMs along with possible mechanisms responsible for pathogenicity of Helicobacter pylori.Materials and Methods: The literature was searched on “PubMed” using different key words including Helicobacter pylori, CEACAM and gastric.<br ...

متن کامل

Anti-angiogenic Effects of Metformin, an AMPK Activator, on Human Umbilical Vein Endothelial Cells and on Granulation Tissue in Rat

Objective(s)Metformin is well known for activation of AMP-activated protein kinase (AMPK). AMPK activation inhibits mammalian target of rapamycin (mTOR) as a key signaling process in cell proliferation. Recent epidemiological studies demonstrate that metformin lowers the risk for several types of cancer in diabetic patients. Concerning the critical role of angiogenesis in the incidence and prog...

متن کامل

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

Mechanism-Based Studies of the Active Site-Directed Inhibition and Activation of Enzyme Transketolase

Derivatives of phenyl-keto butenoic acids have been reported to be inhibitors of pyruvate decarboxylase, (PDC). The inhibition of transketolase, a thiamine requiring enzyme such as PDF, by meta nitrophenyl derivative of 2-oxo-3-butenoic acid (MNPB) is reported here. These studies indicate that the inhibitor binds to the enzyme at the active site. A two-step inhibition was observed, first th...

متن کامل

P 61: MicroRNA as a Therapeutic Tool to Prevent Blood Brain Barrier Dysfunction in Neuroinflammation

Endothelial cells present in brain are unique and differ from other peripheral tissues in a number of ways, which ensures specific brain endothelial barrier properties. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation. Various microRNAs (miRNA) have been discovered in different cellular components of the blood bran barrier (BBB). miRNAs a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003